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ON T C02 LASER GENERATED CHANNEL CONDUCTIV1TY AND
ELECTRON BEAM IONIZATION OF AMMONIA

I. INTRODUCTION

Gaseous channels with appropriate conductivity can fascilitate the

transport and guidance of charged particle beams and electrical discharges.

Such channels can be generated by focusing a beam of high power laser or

microwave radiation to breakdown the gas over the desired length. The gas

breakdown results in the formation of a plasma and the heating of the gas,

thereby generating a conducting channel. Studies1-3 have often used CO2 laser

to form channels in various gases such as air, N2, NH3 and C2H2. The

characteristics of such channels, i.e., the channel temperature and the

channel conductivity must be understood in order to provide the basis for the

understanding of charged particle beam transport and guidance in the channel.

In this report we present a preliminary analysis on the characteristics

of NH3 channels formed by using a CO.2 laser where the laser power is below the

threshold for breakdown. The report also presents the electron beam

ionization (collisional and avalanche) of NH3 and calculates the conductivity

generated by the beam for two typical experiments (NRL and Sandia

- Experiments). The calculation of the electron beam generated conductivity

shows that the beam does its own thing in that the residual channel

conductivity plays no role but a neutral density channel left behind by the

laser will modify the conductivity generated by the beam. This is because the

channel conductivity is either non existent or below the relevant value in

'* these two experiments.

1I. CO2 LASER ABSORPTION BY NH 3.

Tne CO2 laser is a multi-line laser, and in general it can be tuned to a

given frequency. Several of the laser lines are in near resonance 4ith

absorption bands in NH3. As an example, the V2 mode ener3y diagram is shown

* .Manuscript approved June 14, 1983.
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in Figure I where the CO2 laser transitions i.e. R(16) and R(30) are shown to

coincide with transitions within the v2 band of NH3. Such pumping in general

also leads to lasing within NH3 at frequencies smaller compared to the pump

frequency. 7he absorption of the laser quanta by the molecule in the ground

state would raise the molecule to V=1 level and several other processes of

importance will occur.

l. The vibrational energy is converted to gas kinetic energy through

the VT energy exchange.

2.Higher levels can be excited by further absorption of the

vibrational quanta, resulting in collisionless dissociation of the

molecule.

3. Vibrational-vibrational collisions resulting in the ladder type

excitation and dissociation.

4. Stimulated emission.

5. Saturation of absorption.

The first process is very rapid and has a relaxation time5 of 2.5 nsec/atm.

The second process occurs for short pulse lasers - in the n sec regime, while

the last process occurs for lasers of long duration -> 10 nsec.

III. THE NRL EXPERIMENT

The experiment at NRL carried out by the Channel Physics Group in the

Plasma Physics Division utilizes a home made ,altimode CO2 laser. This laser

has6 a total power of (50J) and pulse length of 200 nsec. It was used to

study channel physics in NH3 where a 40 Tbrr NH3 filled the chamber through

4hich the CO2 laser was passed in weak focus condition (The focusing was

outside the chamber). The energy absorbed by the gas was 25 m per cm3

resulting7 in a temperature rise to - 0.1 eV.

,::..~~~------------.,,. }, _-.-- ---------------- ;-.--.. ,.... ... ...... - .... -
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Fi gur e I The v2 mode energy diagram of NH3 for the ground state and V--1
level. Two CO2 laser bands R(16) and R(30) are shown to indicate the
resonance absorption by NH3
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IV. THERMAL DISSOCIATION AND IONIZATION OF NH3

A. In this section de will discuss the dissociation and ionization of

NH3 based on the equilibrium calculation. The absorption of CO2 laser

radiation by NH3 and the rapid relaxation of the vibrational energy to kinetic

energy justifies the equilibrium approach. This relaxation time TVT has been

measured5 in pure ,IH3 and was found to be equal to 2.5 nsec/atm. This time in

the case of the NRL experiment is 47.5 nsec which is still much smaller then

the pulse width ( - 200 nsec.).

The mass action law8 for the dissociation equilibrium is

H NH2
-K (1)

NH3

Where K is the equilibrium constant H, NH2 and NH3 are the densities of the

relevent species. The equilibrium constant can be expressed 8 as

-AE/RT
Q(H) Q(NH 2 )

K = Q(NH3 ) e (2)

WJhere Q(S) is the total partition functions of species S and is a function of

temperature only. The total partition function in general is a product 8 of

translational and internal partition functions of species S i.e., Q =Qtv

Qint. Thus

i \3/2
S2TkTM Qint(H) Qint (NH2)
K Qint (NH3)(3

We shall assume that the major contribution to the internal partition

functions of the molecule is due to the rotational and vibrational excitation

4



which is always the case for poly-atomic molecules at temperatures below

1eV. The rotational partition function for NH2 and NH3 are
8

= .00693 x 10 (4)

1

Where IA' IB and Ic are the moments of inertia along the principal axis or

planes. On the other hand, the vibrational partition function is
8

v iI - e-wi hc/kT d

Where w. is the frequency of the vibrational excitation and d. is the degree

of degeneracy. Utilizing these relations into the equilibrium constant one

obtains

d.

IAI BI C) (1 _wihc/kT )  
JO

3/2 2 N (2 i NH 2
K (0.31T) x 10 Ep 480 (6)

V(AIBIc) -w. i( -i h c /kT )
NC)H 71 ( 1 -hc2.

1 ~ NH3

The vibrational partition function is calculated for several temperatures and

are shown in Table I

TABLE I

T(0K) 2V(NH 2, )  vN )

1000 1.26 2.07

2000 1.92 5.9

.2'The results in Table I are obtained using the followtng excitation energies

0.4, 0.12, 0.43 and 0.2 for the vibrational levels of NH3 1-1 0.4, 0.19 and



0.4 for NH2 . Issuming that the moments of inertia of NH2 and NH3 are the

same, we obtain

3/2 21 4988o0
K = (0.3T) x 10 R(T) Exp 480 (7)

Where R is the ratio of the vibrational partition functions of NH2 to NH3. If

H
we designate a as the degree of dissociation i.e. a = - then the mass action

NH3

law can be written as

2 3/2 21 (498801SNH 3 = K =(03T) x 10 R(T) Exp ( -) (8)

Values of a for several temperatures are given in Table II for NH3 = 1.4 x

1018 cm 3 ( 40 Torr).

TABLE II

T(K) a

1160 1.2(-6)

2000 2(-2)

2200 1(-1)

B. The thermal ionization of NH3 in most probability arises -as a result of

the associative ionization. i.e.

+
H + NH 2 + NH 3 + e (9)

rather than

6.
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+
NH3 + NH 3 + NH3 + NH3 + e (10)

We shall calculate both rates, however, to delineate the most favorable

regime.

Saha's Equation for the last process is

2 3/2
Ne 27rmkTe = 2 Exp (-117740/kT) (11a)h 'h

2Ne 15 3/2 117740.N = 4.8 x 10 T Exp ( 174 (11b)
NH3  k

+
where we have assumed equal statistical weights for NH3 and NH3 . The

equilibrium electron ensity is given in Table III for several temperatures of

interest for an NH3 density of 40 Torr. -'.5

TABLE III

-3
N (cm

T(°k) e

1160 1.5 x 10 - 3

2000 1.6 x 106

2200 2.8 x 10

Now let us consider the associative ionization process. For this we shall -

utilize the general cross section developed by Nelson and Dahler. "Ie

thresold expression for this cross section is

2 9
2.1 R x 5

a E (E Eth) (12)



Where R is the crossing point, Eth is the threshold for association and

x - 2(2)V2r /E • Here, r' is the aidth of the transition and E is thec d c d

derivative of the potential curve at the crossing point. Using(*)

r_ 0.04 and Rc _ 10 cm i.e. X 1.6 x 106 and Ed 1.0 x 10 , we obtain

3/2
_1 16 (E- 5.8) (13)o . =4.2 K 10 (13

ai E

where E is in units of eV. Using the slope of this cross se, un one obtains

the following rate coefficient for the associative ionizatior

-12 _5 8
R = 10 VT (5.8 + 2 T ) e g (14)

g g

where T is in units of eV.

If we assume that the dissociative recombination rate coefficient is

10- 6cm3sec, then at equilibrium we will have

_6 2
10 N = R H NH2  (15)e am.

Table IV gives the values of the electron density using the equilibrium values

of H given in Table II

+(*) Values relevent to N + 0 NO + e

'
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TABLE IV

-3

T(*K) H (cm
- 3 ) . e (cm

1160 1.68 x 1012 5.3 x 10 - 4

2000 2.8 x 1016 2 x 106

2200 1.4 x 1017 5 x 10 7

If one lowers the dissociative recombination rate coefficient by an order of

magnitude, the equilibrium electron density will be as in Table V.

TABLE V

-3
N (cm
e

T( OK)

116) 1.8 x 10

2000 6.3 c 106 JR

2200 1.5 x 108

V. THE AVALANCHE IONIZATION OF NH 3 .

The Townsend ionization coefficient for NH 3 has been measured by Risbud
E-

and Naidu10 for - between 115 x 10-17V-cm2 and 2060 x 10- 17V-cm 2 .  -he
N

following expressions fit the data to better than 30%.

a 1.23 x 10 /
-=1.07 x 10 Exp E/N (16)

for

115(-17)<E/N < 182 (-17)

- " 1I " I I .. . " " - I - II- i - . . . . . .. .. ... I
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.4 I

and

a _ [ 6 5 .2 x 1 0

N 4.34 x 10 Exp (- (17)

for S

182(-17) 4 E 2060 (-17)

The electron drfit velocity, however, is measured 1 1 over a limited range, i.e.

up to E/N = 50 x 10-17 V-cm 2 . We have obtained the following fit for the

b 22
7V = - 1.26 x 10 + 2.0 x 10 (E/N) (18)

drift velocity for the region of E from 46.1 x 10- 17 I-cm2 to 54.2 x 10- 17 V-N

cm2 . This expression can be extended to higher E/N until further data becomes

available.

Using Equations 16 - 18 we obtain the following expressions for fthe

reduced ionization frequency in NH3

V. 22 E _14 1.3x 1 4
21.26 x 10 + 22.0 x 10 Exp 1.23 x 10 (19)

L =-) x-.2 x. 10 10 2(19()lEN E/N

for

115 (-17) 4 E/N 4 182 (-17)

and .1

S6 22 6 65.2 x 10

--1.26 x 10 + 2 x 10 (E/N)] 4.34 x 10 Exp (- E/N ) (20)

for

182 (-17) 4 E/N < 2060 (-17)

The reduced ionization frequency -J, is giren in Tabi=_ V7.

10



TABLE VI

E/N V I/N E/N V./N

115 (-17) 0.494 (-11) 1234 (-17) 6.17 (-8)

123 (-17) 1.14 (-11) 1543 (-17) 8.64 (-8) 0

154 (-17) 1.06 (-10)

200 (-17) 6.50 (-10)

216 (-17) 8.85 (-10)

308 (-17) 3.08 (-9)

462 (-17) 9.56 (-9)

617 (-17) 1.82 (-8)

925 (-17) 3.9 (-8)

VI. THE ELECTRON BEAM COLLISIONAL IONIZATION OF NH3

The electron beam ionization of NH3 can be estimated readily, provided

one knows the NH3 stopping power for high energy electrons. For this purpose

we shall assume that ammonia is neonlike and its density is equivalent to that

of nitrogen atom. Using the calculated data for dE/dx for neon12 one obtains

a value of 1.96 x 10 eV/cm, in one atmosphere of NH3 , for electrons with

~energy of 1 MeV. This value increases by ~- 20% when the beam electron energy

is 10 MeV.

(*) (-17) indicates 10- 17

11



VII. CALCULATIONS AND CONCLUSIONS

In the preceeding sections we have presented the electron beam

collisional and avalanche ionization parameters of NH3. Furthermore, we

presented the equilibrium calculations of an NH3 channel generated by lasers

in the temperature range of 0.1 to 0.19 eV. From these equilibrium relations

we have obtained the residual electron density in the same temperature range.

In this section we would like to calculate the residual conductivity for

two channels, one at a temperature of 0.1 eV (NRL Experiment) and the other at

a temperature of 0.19 eV (Sandia Experiment). Then we will calculate the

conductivity generated by two electron beams, one with a radius of 1 cm, a

peak current of 8 kA and a current rise time of 20 nsec (NRL Experiment) and

the other with a radius of I cm, a peak current of 50 kA and a current rise

time of 60 nsec (Sandia Experiment). These calculations can be made readily

for a short time (1 nsec), which is sufficient enough to provide the needed

information on the conductivity generated by the beam.

VII.I THE RESIDUAL CHANNEL CONDUCTIVITY

The conductivity of the channel can be expressed by

8
o=2.5 x 10 Ne/v (21)

where v is the momentum transfer collision frequency of electrons in NH3.m

The cross section for the electron momentum transfer in NH3 has been measured

by Pack, et a1 1 1 and is shown in Figure 2. In this figure, the electron

momentum transfer cross section1 3 in N2 is also shown for comparison.

The momentum transfer collision frequencies in 40 Thrr of NH3 with

electron temperatures of 0.1 and 0.2 eV are x2.7 1011 sec -  and 4 x 1011

12



E5 W W.

N 10-13
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0 - N2
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0.01 0.1 1.0 10
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Figure 2 The electron momentumn transfer cross section in ammonia and N2.
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sec 1 , respectively, corresponding to the experiments of NRL and Sandia. Thus

the residual conductivities in these experiments are 10- 6 sec - 1 (NRL) and

10 5 sec -  (Sandia). The non-existence of conductivity at the NRL experiment

has been borne 7 out by the measurements at NRL. It should be noted (See

Figure 2) that when the plasma electron energy increases (when the electron

beam enters the channel) the momentum transfer cross section becomes smaller

and hence would the collision frequency. The product oE ov varies from 3.4 x

10- 7 to 6 x 10- 8 for electron energy of 0.1 eV to 1.0 eV which implies a

lowering of v by a factor of - 6. Even if this factor could become an orderm

of magnitude the residual conductivity in the Sandia experiment would still

be - 106 sec - , which is much below 109 sec - .

VII.II ELECTRON BEAM GENERATED CONDUCTIVITY

A simple hand calculation for the beam ionization in ammonia for the NRL

and Sandia Experiments is shown in Figure 3 indicating that the beam generates

much more electrons, and in a short time, compared to the residual electron

density. These calculations are based on the assumption that Ez is constant

for times shorter than I nsec. and that In - Ib* With this the electric field

for the Sandia Experiment is twice that of NRL.

In Figure 4 we show the electron procuction rates for direct and

avalanche processes in both NRL and Sandia Experiments, based on a more

sophisticated model 14 . This model solves the rate equations for ionization

coupled to a simple circuit equation for Ez. These results show that the role

* of avalanche ionization is more discernible in the Sandia Experiment than that

of NRL. Also if the channel is assumed to be rarefiedi (due to heating) by a

factor of 6, the avalanche ionization in Sandia Experiment plays an important

role compared to the direct beam ionization.

14
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Figure 3 The electron density build up in 40 Torr of ammonia due to beam
interaction. The avalanche contribution is shown separately for two
experiments (NR.L and Sandia).
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1020
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*Figure 4 The electron density production rate in 40 Torr of ammonia. Direct
beam collisional ionization and avalanche contributions are

indicated. The density reduction by a factor of 6 is also shown forI
the Sandia Experiment.
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In conclusion one could say that in both experiments the beam does itsL

* own thing and that the small or non existent residual condjcttvitv in the

laser heated channel adds very little to the beam generated conductivity.

However, the neutral density channel left behind by the laser 4ill iodify the

conductivity generated by the beam.
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- relevant rate equations and providing -ne with Figure 4 and Dr. Lampe for
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